Download the Conference Proceedings
Proceedings
Authors
| Filter results25 paper(s) found. |
|---|
1. Repurposing Zinc from Mining Tire Waste to a Fertilizer ResourceZinc (Zn) deficiency is common on high pH soils when growing field crops like Corn, Barley and Wheat. Not only are crop yields and quality limited by low Zn, but more importantly the dilution of Zn in food stuffs and, thereby, Zn deficiency in the human diet has become a major concern as recognized by the World Health Organization. At the same time, there is a Global problem in proper repurposing/disposal of used tires that contain between 1-3% ZnO. In fact, in Chile, the... K. Greer, J. Wiebe, E. Bremer |
2. 15Nitrogen Uptake and Use Efficiency in Corn in Response to Fertilizer Rate and TimingUrea fertilizer applications at planting are becoming increasingly common for U.S. upper Midwest corn (Zea mays L.) production but wet spring conditions may result in significant nitrogen (N) fertilizer loss. Split-applications may avoid wet conditions and improve fertilizer uptake and use efficiency. Six field studies were performed to determine the effect of urea fertilizer rate and application timing on fertilizer-derived N (FDN) and soil-derived N (SDN) plant uptake over two consecutive... F. Fernandez, J. Spackman |
3. Evaluating Nutrient Uptake and Partitioning for Hybrid Carrot Seed Production in Central OregonHybrid carrot seed production is prominent in Central Oregon, however plant nutrient uptake dynamics in this crop are not well understood. The aim of this research was to evaluate nutrient uptake and partitioning during the production cycle of a modern Nantes-type hybrid carrot. Trials were conducted in two commercial carrot seed production fields planted to ‘Nantes 969’. Below- and above-ground plant biomass was destructively sampled and separated into roots, tops, and umbels throughout... E. Jeliazkova, A. Moore, J. Spring, T. Wilson |
4. Denitrifying Woodchip Bioreactor Performance in the Pacific NorthwestRunoff and tile drainage from agricultural activity is known to be a significant contributor of nitrogen pollution to surface waters. Denitrifying woodchip bioreactors, also known as Permeable Reactive Barriers (PBR) have been studied as a possible edge-of-field technology for reducing nitrogen concentrations in agricultural runoff. These units have been studied mostly in the US Midwest and mostly for irrigated crop systems. Little work has been done in alternative climate regimes... E.M. Weisshaar |
5. Enhanced Efficiency Nitrogen Fertilizer: Coated UreaNitrogen is the most common fertilizer applied to crops, as it is typically the limiting nutrient in plants. However, about half of the nitrogen added to soil as fertilizer is either emitted to the atmosphere as ammonia, nitrous oxide or other gaseous forms, or finds its way into surface or ground waters as nitrate (Kibblewhite, 2007). The inefficient use of fertilizers depletes natural resources, and increases atmospheric emissions and environmental pollutants. With the use of enhanced efficiency... B. Geary, S.R. Fahning, B.G. Hopkins |
6. Compost Application in California Tomato Cropping SystemsWith the implementation of California Assembly Bill (AB) 341 the availability of composts such as green waste (GW) and co-composted green waste and food waste (FW) as a soil amendment is increasing. The use of those organic amendments in agricultural production systems has been recommended as an effective strategy to make full use of organic waste and improve soil health. However, little information is available to tomato growers to reassess N inputs from using GW and FW. This study was conducted... Q. Yi, W. Horwath, S. Haas, X. Zhu-barker |
7. Evaluating Cover Crops for Nitrogen Management in a Walnut OrchardCover crops provide numerous benefits in agricultural systems. From increasing soil water storage to reducing fertilizer inputs, quantifying cover crops benefits is crucial in nutrient management, crop productivity, environmental sustainability, and growers' adoption. The goal of this study was to quantify nitrogen (N) and carbon (C) inputs in a walnut (Juglans regia L. 'Chandler') orchard that implemented three cover crop mixtures. The study site was a 5-year-old walnut... D. Zapata, X. Zhu-barker, K. Steenwerth, W. Horwath |
8. Precision Sensing for Improved Wheat ProductionImproving nitrogen (N) use efficiency (NUE) from current 35-40% is important for growers’ sustainability and environmental quality. Unmanned Aerial Vehicles (UAVs) are proposed as an alternative to traditional field scouting for making crop management decisions. Precision sensors and cameras mounted on the UAVs provide high quality images which can be used to make fertilizer recommendations in-season based on crop nutrient status. A study was conducted at 5 locations in Southern Idaho in... O. Walsh, J. Marshall, J. Mcclintick-chess, S. Blanscet, C. Jackson |
9. Plant Available Silicon Application in Winter WheatMany studies throughout the world has shown that various crops have positively responded to silicon (Si) application in terms of plant health, nutrient uptake, yield, and quality. The study’ objective was to evaluate the effect of Si application rate and time on winter wheat growth and development, grain yield and grain quality. Results suggest that application of plant available silicon at 50% rate at either emergence or Feekes 5 appears to be more advantageous in terms of winter wheat... O. Walsh, J. Mcclintick-chess, S. Blanscet |
10. Response of Spring Wheat to Varied Nitrogen and Water ApplicationsThis study’s objectives were to 1) determine the minimum N and water requirements for optimum wheat grain yield and quality; 2) develop a sensor- based system for identifying – and distinguishing between – N and water stress; 3) produce grower recommendations based on the developed model; and 4) improve grower adoption of efficient water and N application practices and enhance grower understanding of sensor-based technologies. This was the first year of the study, project will... O. Walsh, J. Torrion, X. Liang, J. Mcclintick, S. Blanscet |
11. Phosphorus and Organic Acid Bonding Impacts at Varying Soil pHPhosphorus (P) fertilizer is essential for crop production, but reductions are warranted to conserve resources and minimize environmental impacts. Several lab, glasshouse, growth chamber, and field studies have been performed over the past six years with a new P fertilizer (Carbond P; CBP; Land View Fertilizer, Rupert, ID, USA) mostly in calcareous, low OM soil. Studies comparing CBP to ammonium polyphosphate (APP) and monoammonium phosphate (MAP) applied to soil show season-long increases in... T. Blair, C. Ransom, P. Hosford, J. Svedin, L. Sutton, A. Winchester, K. Manning, T. Hopkins, B. Hopkins |
12. Sensor-based Technologies for Nitrogen Management in Spring WheatCrop sensor-based systems with developed algorithms for making mid-season fertilizer nitrogen (N) recommendations are commercially available to producers in some parts of the world. Although there is growing interest in these technologies by grain producers in Montana, use is limited by the lack of local research under Montana’s semiarid conditions. A field study was carried out at two locations in 2011, three locations in 2012, and two locations in 2013 in North West Montana. The objectives... O. Walsh, A. Pandey, R. Christiaens |
13. Evaluation of Micro-carbon Technology-based P Fertilizer, Super Phos®, in Spring WheatSuper Phos® (SP; 0-50-0) by Bio Huma Netics Inc. (Gilbert, AZ) is a Micro Carbon TechnologyTM – based phosphorus (P) fertilizer specifically formulated to resist “tie-up” with calcium (Ca) and magnesium (Mg) to remain water soluble and available to plant roots. The objective was to compare the efficiency and effectiveness of topdress and foliar application of SP, with traditional P fertilizers – ammonium polyphosphate (APP; 10-34-0), diammonium phosphate (DAP;... O. Walsh, A. Pandey, R. Christiaens |
14. Environmentally Smart Nitrogen Performance in Northern Great Plains’ Spring Wheat Production SystemsField trials were conducted at three locations in Montana to evaluate the efficacy of Environmentally Smart Nitrogen (ESN) (44-0-0) as a nitrogen (N) source for spring wheat. The ESN, urea (46-0-0), and a 50%-50% urea-ESN blend was applied at seeding at three rate levels - low, medium, and high - with actual rated dependent on the yield goal at each location, followed by urea application of 0 or 40 lb N/a at Feekes 5. Grain yield (GY) varied from 265 to 815 lb/a and grain protein (GP) content... O. Walsh, A. Pandey, R. Christiaens |
15. Liquid N Fertilizer Evaluation in Spring WheatSeveral liquid N products are currently marketed for fertilization in various crops, including spring wheat. Urea ammonium nitrate (UAN) - the most commonly used liquid N fertilizer - is associated with crop damage due to corrosiveness. This study aimed to answer the following questions: (1) Are liquid urea (LU) and High NRG-N (HNRGN) superior to UAN in improving spring wheat grain yield and protein content? And (2) what is the optimum dilution ratio of foliar fertilizers and the threshold at... O. Walsh, A. Pandey, R. Christiaens |
16. Advancing Nitrogen and Irrigation Management for Row Crops and Biofuel Crops in the Western USNitrogen, irrigation and N by irrigation studies from West Texas and central Arizona are discussed. In the first study with surface drip, deficit irrigation, N fertilizer rate response was observed with cotton (Gossypium hirsutum L.) in 50 and 75 % ET replacement, but not with dryland or 25 % ET. Irrigation level response was evident with LEPA in two of three years in Lamesa Texas, but not in a wet, third year. Variable-rate N showed a more consistent response than blanket-rate N in that... K. Bronson, J. Mon, D. Hunsaker, G. Wang |
17. Measured and Predicted Temporal Changes in Soil Nitrate-n Levels from Late Summer to Early Spring in MontanaMost soil sampling is conducted from August to November in Montana because of better soil sampling conditions and because it provides more time for growers to make fertilizer decisions prior to application. Fertilizer guidelines in Montana are based on spring nitrate-N levels in the upper 2 ft because they are more indicative of growing season available N than fall nitrate-N levels. It is not known how much nitrate-N levels change between late summer and spring, nor is it known what factors affect... C. Jones, A. Lenssen, C. Chen, K. Mcvay, B. Stougaard, M. Westcott, J. Eckhoff, J. Weeding, M. Greenwood |
18. Influence of Dairy Manure Applications on Corn Nutrient UptakeCorn silage is the predominant crop in Idaho used for recovering phosphorus (P) that has accumulated in soils from dairy manure applications. However, little is known about how much phosphorus and other nutrients are being recovered under Idaho conditions. The objective of the study is to estimate phosphorus removal by irrigated corn silage crops cultivated throughout Southern Idaho with variable soil test P concentrations, and to identify effects of increasing soil test P on potassium (K), calcium... A. Moore, B. Brown, J. Ippolito, S. Hines, M. De haro marti, C. Falen, M. Chahine, T. Fife, R. Norell |
19. Delivery of Soil Science to Farmers Using Advanced Simulation Tools: a 10 Year Case StudyTechnologies that aid in farm management and input application can increase profitability only if they readily show an advantage that the farmer can measure (Walton 2010). Western Ag Labs Ltd. (WAL) is a soil science laboratory which provides an educational soil service to producers of Western Canada using the PRSTM Technology. The service provides their customers access to advanced simulation tools that serves as a decision support system for Crop Nutrition Planning (CNP). The PRSTM technology... K. Greer, D. Wildfong, D. Hicks, E. Hammermeister |
20. Economics of Fertilization Under Site-specific Management ZonesSite-specific management of crop fields using variable rate application of inputs to manage in-field variability has now been around for over 15 years. However, the degree to which site-specific management strategies increase farm profitability is not well established. The objectives of this study were: to compare uniform and variable-rate Nitrogen (N) management strategies across productivity level site-specific management zones and to identify the most profitable N management strategy. This... R. Khosla, D. Westfall, W. Frasier, B. Koch |
21. Predicting Phosphorus Runoff from Calcareous SoilsStudies have shown that as extractable soil P levels increase, runoff P levels also increase. This relationship has been found on many different soils, but tends to be unique for each soil series. Very little research exists evaluating this relationship in calcareous soils. The objectives of this study were to determine soil series specific relationships between soil test phosphorus (STP) and runoff P for three calcareous soils, to compare the use of different soil extractants for runoff P prediction... J. G. davis, R. Schierer, J. Zumbrunnen |
22. Soil Zinc Application for Southwestern PecanPecan trees grown in the alkaline soils of the southwestern United States are prone to zinc deficiency unless supplemental zinc is regularly applied. Standard treatment involves multiple foliar zinc applications. Soil zinc application would provide several advantages. A field study was initiated in 2005 with three soil zinc treatments: no zinc (control), ZnSO4 (74 kg.ha-1 Zn), or ZnEDTA (19 kg.ha-1 Zn) were applied one time in March, 2005 in bands 18 cm deep and 1.2 m on both sides... J. Walworth, A. Pond, H. Nunez, B. Wood, M. Kilby |
23. Remote Sensing of Corn N Status with Active SensorsDetermining in-season corn (Zea mays L.) nitrogen (N) variability has been a research focus of agronomists for quite some time. One of the methods currently available to determine N variability in corn is remote sensing. Studies have shown that remotely sensed imagery can detect N variability in corn. However, this method can have some limitations, such as the timeliness in which this imagery can be acquired. Hand-held active remote sensing devices may overcome these limitations.... D. Westfall, R. Khosla, T. Shaver |
24. Nitrogen Fertilizer Rate and Timing Implications for Malt, Food, and Feed Barley Production in Southern IdahoNitrogen is an essential nutrient required to produce high-yielding barley. Nitrogen strongly impacts barley yield, grain protein, tillering, and lodging potential. Unlike other crops such as corn, available nitrogen must be carefully managed for producers to achieve both optimal yield and grain quality for malt, food, and feed barley. Exessive nitrogen availability increases grain protein concentration that may be unsuitable for malting but may be ideal for feed or food barley. The objective... J. Spackman, O. Walsh, A. Adjesiwor, O. Adeyemi, J. Sagers, R. Findlay, J. Bevan |
25. Banana Fiber as a Soil Amendment in Potato and CornBanana (Musa spp. L.) pseudostem fiber has unique properties that may prove helpful in plant and soil management, including a high water holding capacity. Increased capacity could be useful in water conservation efforts in areas experiencing long-term drought. In the agricultural space, banana fiber could be used to maintain soil moisture, thus lowering the frequency and/or amount of irrigation. The objectives of irrigated field studies in Provo, UT, USA were to measure the impact of... B. Hopkins, M.J. Foster, S.V. Nelson |