Download the Conference Proceedings
Proceedings
Authors
Filter results90 paper(s) found. |
---|
1. Is Mitigation of Drought Stress By Zinc Oxide Nanoparticles Driven By a Nano-Specific Mechanism or Alleviation of Micronutrient Deficiency?It has been reported that zinc oxide (ZnO) nanoparticles (NPs) can promote drought tolerance in crops when used as soil amendments. However, many of these experiments were conducted in Zn-deficient growth media with no comparison to currently available Zn fertilization methods, making it unclear if the benefits from adding ZnO NPs were caused by a nano-specifc mechanism or simply by the mitigation of a micronutrient deficiency. A review of the literature shows that of 12 published experiments... J.W. Deakin, M. Potter, A. Cartwright, J. Hortin, D. Sparks, J.E. Mclean, D.W. Britt, A.J. Anderson, A.R. Jacobson, L. Yen |
2. Enhanced Efficiency Nitrogen Fertilizer: Coated UreaNitrogen is the most common fertilizer applied to crops, as it is typically the limiting nutrient in plants. However, about half of the nitrogen added to soil as fertilizer is either emitted to the atmosphere as ammonia, nitrous oxide or other gaseous forms, or finds its way into surface or ground waters as nitrate (Kibblewhite, 2007). The inefficient use of fertilizers depletes natural resources, and increases atmospheric emissions and environmental pollutants. With the use of enhanced efficiency... B. Geary, S.R. Fahning, B.G. Hopkins |
3. Stacking and Intersecting Nutrient 4Rs and Using In-Season Canopy Health and Petiole Nitrate Analysis on Russet Burbank PotatoesThe 4Rs of nutrient management is a global outreach with an aim to improve the sustainability of major cropping systems and the environment. The objective for this project is to evaluate individual and stacked 4R management practices and how they intersect in Russet Burbank potato at a field near Grace, Idaho in 2020. Nitrogen (N) fertilizer treatments included all combinations of two sources [urea vs polymer coated urea (PCU)], two rates (207 vs. 247 kg ha-1), and two timing/placements... S. Stapley, B. Hopkins |
4. Phosphorus and Potassium How Low Can You Go In Alfalfa?Tissues testing whole alfalfa plants at harvest can more accurately direct nutrient decisions. Developing critical nutrient levels in-season improves recommendations and applications, saving producers time, expense and effort since many growers take samples for hay quality. These three experiments were designed as follows: 1) Phosphorus (P) Rate study with differing rates of P2O5 using monoammonium phosphate (MAP); including: 0, 30, 60, 120, 240 lb P2O5... S. Norberg, S. Fransen, J. Harrison, D. Llewellyn, L. Whitefield |
5. Estimating Nitrogen Credits from Organic Matter Sources in OrchardsOrchard crops like almonds can effectively utilize different nitrogen (N) sources to meet the high annual N demand for fruit and tree growth. Different fertilizer formulations like urea ammonium nitrate, calcium ammonium nitrate, ammonium sulfate and potassium nitrate are widely and effectively used, and readily available for uptake. Yet, addressing N availability from organic matter sources in orchards, and in turn estimating appropriate N credits... S.S. Khalsa, P.H. Brown |
6. Winning the Battle Against Environmental Stress by Better Understanding Biostimulant ResponsesBiostimulants are increasingly being used by growers to manage environmental stress. Some examples of biostimulants include seaweeds, organic acids, plant based extracts, amino acids, fermentation products, algae, and reprocessed vegetative matter. Holden Research and Consulting (HRC), an independent agricultural research firm in California, has conducted over 500 trials with biostimulants over the last ten years. HRC’s findings indicate that they can be valuable tools... D. Holden |
7. Overview of the Efficacy of BiostimulantsSo-called “biostimulants” have been around a long time, but interest in these crop production products is growing exponentially. A survey of major fertilizer companies indicates it is one of the top three current trends in their businesses— with significant research, development, and investment. However, this major trend in agriculture is fraught with misperception, confusion, and generally lacking credentialed recommendations. Biostimulant is not listed as a word... B. Hopkins |
8. Biological and Chemical Drivers of Nutrient Dynamics in the Rhizosphere: Applications for Crop ManagementThe rhizosphere (soil volume around plant roots) is a "hot spot" of plant-microbe- soil interactions, and biological and chemical dynamics in this region play a large role in plant access and uptake of nutrients. Crop plants can influence these dynamics in the rhizosphere to facilitate availability and uptake of nutrients, and can form symbiotic or antagonistic relationships with rhizosphere soil microbes, who either facilitate or compete with plants for nutrient... N. Tautges |
9. Polymer Coated Urea and Urea Blends on PotatoPotato (Solanum tuberosum L.) is a globally important crop with significant economic and environmental impacts. Nitrogen (N) has a large impact in both instances. Polymer coated urea (PCU) is a N source with the ability of improving production and the environment. Environmentally Smart Nitrogen (ESN) is a PCU that may reduce the need for continual N application throughout the season. The objective of this research was to evaluate the impacts on potato tuber yield and quality with uncoated... E. Carlock, A. Weigel, T. Searle, T. Hopkins, J. Williams, B. Hopkins |
10. Polymer Coated Urea Impact on Barley Yield and ProteinPolymer coated urea (PCU) is an enhanced efficiency nitrogen (N) fertilizer shown to regulate N release over a season benefiting production and reducing nutrient pollution. The purpose of this study was testing the effect of uncoated and coated urea blends on irrigated barley yield and protein. The study consisted of three N rates applied as all urea or a 50-50 blend of PCU and urea. As expected, N rates increased yields and protein. In general, urea resulted in increased yields with... S. Fahning, T. Searle, A. Weigel, R. Buck, T. Hopkins, B. Hopkins |
11. Struvite Phosphorous Fertilizer on Sugar BeetSugar beet is very sensitive to P deficiency early in the growing season. Crystal Green is a struvite phosphorus (P) fertilizer source that may uniquely enhance uptake in sugar beet. In this study, we examine the effect of struvite applied to sugar beet and compare the results against the use of traditional monoammonium (MAP) fertilizer and a control. There was a significant increase in response to MAP over the control for both total and sugar yield. The struvite based fertilizer had an additional... J. Fisher, E. Woolley, J. Svedin, B. Hopkins |
12. Water and Nitrogen Interactions in Kentucky BluegrassPressure is increasing in arid regions to conserve water, especially during drought. Turfgrass is the irrigated crop of greatest acreage in the United States and is coming under scrutiny in urban ecosystems. The purpose of this study was evaluating water use by Kentucky bluegrass (Poa pratensis L.) under various irrigation and nitrogen (N) regimes. A study was conducted in an established stand of Kentucky bluegrass in Provo, UT, USA. The turfgrass was split equally into 27 plots (11... A. Hopkins, C. Campbell, B. Hopkins, N. Hansen |
13. Source and Rate Interactions for Enhanced Efficiency Phosphorus FertilizersPhosphorus (P) is an essential plant nutrient and plays a major role in the health and wellbeing of ecosystems. Deficient P is detrimental to plants. Excessive P is also detrimental to plants and is potentially harmful environmentally. Soil testing is an effective tool to help growers determine if fertilizer P is needed and, if so, the rate that is needed to be applied. Rates higher than the recommended amount can be detrimental to plant health and decrease yield. In addition to applying the right... A. Norris, B. Hopkins |
14. Nitrogen Management in Small Grains After AlfalfaSmall grains are commonly grown following alfalfa in Utah and the Intermountain West, especially during drought years as small grains require less irrigation than corn. Several studies across the country have shown that corn following alfalfa rarely needs N fertilizer, yet relatively few have evaluated the N needs of small grains. Furthermore, research on the N needs of small grains grown as forage vs. grain are even more sparse. The objectives of this research are to quantify the... C. Pound, M. Yost, E. Creech, G. Cardon, K. Russell, D. Despain, J. Gale, K. Heaton, B. Kitchen, M. Pace, S. Price, C. Reid, M. Palmer, M. Nelson |
15. Polymer Coated Urea in Kentucky BluegrassNitrogen (N) is a commonly over-applied nutrient in urban environments. This over-application has led to nutrient pollution of the atmosphere and hydrosphere. The losses of N to the environment can be mitigated with the use of enhanced efficiency fertilizers, such as polymer coated urea (PCU). Some PCU labels state that a single annual application is a best management practice. The objective of this study was to evaluate a PCU compared to monthly applications of ammonium sulfate/urea.... S. Stapley, J. Buss, B. Hopkins |
16. Phosphorus Fertilizer and Hydrogel for Rangeland SeedingThe US Air Force uses live munitions at Hill Air Force Base, a desert testing range west of Salt Lake City, Utah, USA. Resultant fire has disturbed rangeland vegetation. Revegetation of the area is impeded by low average precipitation rates of approximately 0.025 m per year, and opportunistic invasive species. Previous studies indicated hydrogel increases soil water content and the longevity of bottlebrush squirrel tail seedlings. In this glasshouse study, the effects... M. Valencia, S. Nelson, B. Hopkins |
17. Struvite Phosphorus Fertilizer on PotatoPotato (Solanum tuberosum L.) is a staple in the global economy and on the dinner table. It has an unusually high demand for phosphorus (P) due to its shallow, inefficient root system. Most P fertilizers are water soluble, but then precipitate quickly—potentially resulting in poor plant uptake. Crystal Green (a struvite based fertilizer) is acid soluble, but not water soluble. In theory, it remains undissolved until plant roots exude acids— potentially avoiding the precipitation... R. Woolley, J. Svedin, E. Woolley, B. Hopkins |
18. Boron Fertilization with Aspire® in Alfalfa and PotatoPotassium (K) and boron (B) are essential nutrients. The spatially even distribution of applying K fertilizer is typically not a problem, but for B fertilizer application, it is a problem. This is especially difficult for crops such as alfalfa (Medicago sativa L.) and potato (Solanum tuberosum L.) due to low B rate and limited soil exploration by roots. Fertilizer with K and B fused into a single granule could result in even distribution. Trials were performed to evaluate the performance... E. Woolley, T. Searle, T. Hopkins, J. Williams, B. Hopkins |
19. New Hydroponic System for Testing Mineral Nutrient Deficiencies and its Application to QuinoaCorrelating plant tissue nutrient concentrations with visual symptoms is valuable in combating mineral nutrient deficiencies and toxicities. Major crops tend to have large amounts of information regarding nutrient concentrations and visual symptoms of deficiencies, but this information is often lacking for minor crops, including quinoa (Chenopodium quinoa L.) Because nutrient concentrations can be easily controlled, hydroponics effectively demonstrate isolated specific nutrient related symptoms.... D. Cole, R. Woolley, R. Buck, B. Hopkins |
20. Evaluation of Nitrogen Fertilization and Drip Irrigation Levels on Yields of San Joaquin Valley, California, Forage Corn and Sorghum CultivarsIn California (CA), approximately 500,000 acres of corn are grown annually, with most grown for dairy forage. Under reduced irrigation water (IW) supply conditions, forage sorghum acreage can increase to 90,000 acres annually. Corn nitrogen (N) demand is well documented in studies conducted outside of CA, but little research on forage corn and sorghum N use efficiency (NUE) under varying levels of IW has been conducted. With such a large statewide acreage, it is important to improve... R. Hutmacher, N. Clark, J. Dahlberg, J. Angeles |
21. Developing Practical Phosphorus and Potassium Tissue Test Recommendations and Utilizing Struvite in Modern Alfalfa SystemsTissue testing whole alfalfa plants at harvest provides opportunities to direct nutrient decision making more accurately. Critical levels developed allow in- season recommendations and applications and would save producers time and effort since growers are already taking samples for hay quality. Three experiments were designed including: P Study with differing rates of P2O5 using monoammonium phosphate (MAP); including: 0, 30, 60, 120, 240 lbs./acre on an 8.1 ppm P soil (Olson P method);... S. Norberg, E. Mackey, S. Fransen, J. Harrison, D. Llewellyn, L. Whitefield |
22. Soil Water and Plant Canopy Sensor Technologies to Optimize Water and Nutrient UseIn many respects, agricultural technology is doing things now that were only imagined 20 to 30 years ago. Yet, grower tools that provide information and actionable knowledge on water and nutrient availability still remain a challenge. Clearly, rapid development of data transfer and processing platforms to date has provided rich maps of grower fields with overlays of location-specific information but their utility is still limited by our ability to accurately measure the parameters that are the... C. Campbell, N. Hansen, B. Hopkins, S. Evans, E. Campbell, A. Campbell, L. Rivera, D. Cobos |
23. Nitrogen and Water Interactions: Crop Production Systems Case StudiesFarmers and urban land managers have to strike a tenuous balance between achieving plant growth goals while responsibly managing natural resources. Water quality and scarcity issues are prominent concerns, along with soil quality preservation and conservation of fuel and fertilizer resources. The purpose of this presentation will be to highlight case studies where water and crop management practices were considered together to improve the efficiency of resource use. Evidences of water scarcity... B. Hopkins, N. Hansen |
24. Irrigation Effects on N AvailabilityIrrigation is necessary for crop production in the western US where the climate ranges from Mediterranean to desert conditions. Management of irrigation can potentially have large effects on crop available N because nitrate-N readily moves with water and because soil moisture affects root activity and the uptake of N. Additionally, fertigation is commonly used to supply N to crops though the irrigation system. More efficient use of N can be achieved by assuring that an irrigation system has a... M. Cahn |
25. Improving Nitrogen Use Efficiency of Cool Season Vegetable Production Systems with Broccoli RotationsNitrate leaching in leafy vegetable production in the Salinas Valley, CA is a continuing problem. Increased levels of nitrate in groundwater resources affects the ability of municipalities to access drinking water that meet federal water quality standards. Regulations by the Central Coast Regional Water Quality Control Board are now requiring growers to improve nitrogen use efficiency (NUE) in production fields. In prior studies we found that above ground biomass nitrogen (N) at crop maturity... R. Smith, M. Cahn, T. Hartz |
26. Nitrogen Availability and Use Efficiency in Corn Treated with Contrasting Nitrogen SourcesNitrogen (N) is required in relatively large quantities for corn production and is often the limiting nutrient for growth and high yield. Improved understanding of N cycling in agroecosystems is essential for increasing N use efficiency (NUE) and sustainable food production. The transformations between organic N and inorganic N form a central part of the internal soil N cycle. Utah farmers grow approximately 990,000 tons of silage corn annually, which provides important forage in livestock and... A. Kakkar, J. Norton, Y. Ouyang |
27. Creating Prescription Variable Rate Irrigation and Fertilization Zones: Water and Nutrient Management InteractionsVariable rate irrigation (VRI) and variable rate fertilization (VRF) technologies allow irrigation and fertilization rates to be spatially customized. VRF is widely adopted, but VRI is an emerging technology with minimal adoption. As water is often the driving force in nutrient cycling, our overall objectives are to evaluate VRI influences on VRF and vice versa; and to combine these technologies to significantly increase crop yield and quality, conserve water, and minimize environmental impacts... J. Svedin, N. Hansen, R. Kerry, R. Christensen, B. Hopkins |
28. Improving Phosphorus Use Efficiency: Right Rate, Timing, and Placement and Enhanced Efficiency Fertilizer Sources: Research SummaryPhosphorus (P) fertilization is essential for societal sustainability. However, plant P uptake is inefficient due to poor soil P solubility, especially for crops such as potato (Solanum tuberosum L.) plant due to relatively poor rooting efficiency and high demand. Phosphorus use efficiency (PUE) improves with the right rate, timing, placement, and with using enhanced efficiency fertilizer products (EEF). We have conducted several dozen studies over nearly two decades showing PUE is improved... E. Shipp, T. Hopkins, B. Hopkins |
29. Nitrogen and Irrigation Water Interactions in Drought Stressed Kentucky BluegrassThere is increasing pressure in arid regions to conserve water, especially during drought. Turfgrass is the irrigated crop of greatest acreage in the United States and water use for irrigating turf is coming under scrutiny in urban ecosystems. The purpose of this study was to evaluate water use and growth of Kentucky bluegrass (Poa pratensis L.) under various irrigation and nitrogen (N) regimes. A study was conducted in an environmentally controlled growth chamber with established Kentucky... K. Russell, A. Hopkins, N. Hansen, B. Hopkins |
30. Polymer Coated Urea: Meeting Plant Needs While Mitigating Environmental Impacts — Research SummaryFertile soil is the foundation of food production and is maintained by replacing nutrients lost in harvest or to the atmosphere and hydrosphere. Nitrogen (N) accounts for approximately half of global fertilizer inputs. However, N recovery by plants is inherently inefficient due to “leaks” in the system, causing air and water pollution. Additionally, poor fertilizer efficiency is a waste of natural resources and potentially reduces yields, crop quality, and grower profits. Nitrogen-use... S. Bartholomew, T. Hopkins, B. Hopkins |
31. Nitrogen Management and Water Productivity of Grain Crops Under Drought or Limited IrrigationThe interactions of nitrogen management and water have been the subject of many studies that have improved crop management practices. Water scarcity however, has become a pressing contemporary challenge for agricultural and food sustainability, especially in many arid and semi-arid regions of the world. As the amount of available water for irrigation decreases, more studies must shift their focus to how nitrogen fertilizers influences water use efficiency. Numerous strategies are currently employed... S. Evans, N. Hansen, A. Blaylock |
32. Response of Spring Wheat to Varied Nitrogen and Water ApplicationsThis study’s objectives were to 1) determine the minimum N and water requirements for optimum wheat grain yield and quality; 2) develop a sensor- based system for identifying – and distinguishing between – N and water stress; 3) produce grower recommendations based on the developed model; and 4) improve grower adoption of efficient water and N application practices and enhance grower understanding of sensor-based technologies. This was the first year of the study, project will... O. Walsh, J. Torrion, X. Liang, J. Mcclintick, S. Blanscet |
33. Drought and Nitrogen Stress Effects on Maize Canopy TemperatureWater scarcity is a major threat to the sustainability of irrigated agriculture. Management practices, such as limited irrigation, that seek to maximize the productivity of a limited water supply are critical. Remote sensing of crop canopy temperature is a useful tool for assessing crop water status and for more precise irrigation management. However, there is potential that nutrient deficiencies could compound the interpretation of water status from leaf temperature by altering leaf color and... A. Carroll, C. Lindsey, J. Baker, B. Hopkins, N. Hansen |
34. Phosphorus and Organic Acid Bonding Impacts at Varying Soil pHPhosphorus (P) fertilizer is essential for crop production, but reductions are warranted to conserve resources and minimize environmental impacts. Several lab, glasshouse, growth chamber, and field studies have been performed over the past six years with a new P fertilizer (Carbond P; CBP; Land View Fertilizer, Rupert, ID, USA) mostly in calcareous, low OM soil. Studies comparing CBP to ammonium polyphosphate (APP) and monoammonium phosphate (MAP) applied to soil show season-long increases in... T. Blair, C. Ransom, P. Hosford, J. Svedin, L. Sutton, A. Winchester, K. Manning, T. Hopkins, B. Hopkins |
35. Minimizing Nitrogen Inputs While Optimizing Verdure and Growth of Kentucky Bluegrass with Polymer Coated UreaNitrogen (N) fertilizer increases turfgrass verdure but also increases maintenance costs due primary to mowing. A two-year fertilization study was initiated April 2014 at two established Kentucky bluegrass sites with sand and loamy sand constructed field soils in Provo, UT. A grower’s standard practice (GSP) of urea split applied monthly was compared to blend of uncoated and polymer coated urea (PCU). The PCU was applied in 1, 2, or 3 split applications. The dual application applied at 50,... J. Buss, J. Gish, B. Hopkins |
36. Cropmanage: an Online Decision Support Tool for Irrigation and Nutrient ManagementVegetable and berry growers on the central coast of California are under growing regulatory pressure to reduce nitrate loading to ground and surface water supplies. Two tools available to farmers to improve nitrogen use efficiency of these crops are the soil nitrate quick test (SNQT) for monitoring soil residual N concentrations and evapotranspiration (ET)-based irrigation scheduling for estimating crop water requirements. We developed a web-based software application, called CropManage (https://ucanr.edu/cropmanage),... M. Cahn, T. Hartz, R. Smith, B. Noel, L. Johnson, F. Melton |
37. Nitrogen Cycling and Fertilization in Legume Inclusive Cropping SystemsAmong other benefits, legumes contribute nitrogen (N) to subsequent crops. However, predicting the impact on yield and the timing of the N release is difficult. Regardless, adjustments in the N recommendation need to be made to avoid yield and crop quality problems, as well as negative environmental and social issues. Ideally, a reduction of pre-plant/early season N fertilizer is made based on field research. Two possible approaches are used, namely the Fertilizer Replacement Value (FRV) or the... B. Hopkins, J. Stark |
38. Salt and Sediment Balances in an Irrigated Watershed in Southern IdahoThe quality of irrigation return flow in a 205,000 acre southern Idaho watershed has changed since 1970. Converting from furrow irrigation to sprinkler irrigation and installation of wetlands and sediment ponds have greatly reduced sediment loss. There is now more sediment in the irrigation water diverted into the watershed than returns to the Snake River (>100 lb a-1) compared to a net loss of 410 lb a-1 of sediment in 1971. There is also more soluble salt flowing into the watershed than... D. Bjorneberg, A. Koehn, J. Ippolito |
39. Nitrogen Nutrition Impact on Incidence of Rhizoctonia Infection of Agrostis StoloniferaCreeping bentgrass (Agrostis stolonifera L.) is tolerant of short mowing and high traffic, but these conditions increase pathogen susceptibility. A prevalent disease on bentgrass golf course greens and tee boxes is Brown Patch (Rhizoctoniasolani). One potential component of integrated pathogen management is correct nitrogen (N) fertilization. Bentgrass was grown in a chamber hydroponically at deficient, optimum, and excessive levels of N (2.5, 10, and 80 mM; equivalent to 6.9, 27.5, and 220... B. Hopkins, B. Black, B. Neville, C. Ewell, B. Geary |
40. Applying a Phosphorus Risk Index in a Mixed-use Mountain WatershedSurface waters in the Wallsburg, UT watershed have been identified as a relatively high contributor of phosphorus (P) to nearby Deer Creek Reservoir. Identifying the major contributors of P is critical for developing effective management practices. Phosphorus Risk Indices have been widely developed as a tool to identify areas with high risk of P movement, but these tools have mostly been applied to watersheds dominated by agricultural land use. While agriculture is often a source of nutrient pollution,... A.W. Pearce, J. Johns, D. Robinson, N. Hansen |
41. Summarization of 471 Field Comparisons of Avail®Phosphorus (P) is a commonly deficient essential nutrient required for crop production. Economic, environmental, and conservation issues have motivated significant efforts to enhance fertilizer efficiency. AVAIL® is a specialty fertilizer product with claims of enhancing P use efficiency to potentially increase crop yield and quality. There have been at least 471 field comparisons to evaluate the effectiveness of AVAIL with a wide variety of crops. The objective of this summarization... B. Hopkins, K. Fernelius, M. Pryor |
42. Effects of Post-fire Soil Hydrophobicity on Inorganic Soil Nitrogen and Sulfur CyclingFire plays an important role in many native ecosystems, and its suppression has increased woody encroachment across the globe. Restoring native herbaceous communities following fire in encroached systems is often challenging. Post-fire soil hydrophobicity is one factor that may further limit site restoration by limiting soil moisture, which may in turn affect soil nutrient dynamics. We conducted a field study in a burned pinion-juniper woodland to understand the effects of post- fire soil hydrophobicity... B. Hopkins, K. Fernelius, M. Madsen, K. Russell, B. Roundy |
43. Turf Response to Reduced Rates of Polymer-coated UreaPolymer-coated urea (PCU) is a controlled-release fertilizer which can enhance nitrogen (N) use efficiency (NUE), reduce N pollution, reduce the need for repeated fertilizer applications, and reduce turfgrass shoot growth and associated costs. A PCU fertilizer rated for 120 d was applied at 50, 75, and 100% of the recommended full rate and compared to an unfertilized control and urea, applied either all at once or split monthly at the full recommended rate. Spring applied PCU showed no initial... B. Hopkins, C. Ransom, M. Ruth, T. Blair, L. Sutton, D. Bradshaw, K. Campbell |
44. Phosphorus and Organic Acid Bonding Enhances Uptake Efficiency and Yield Response in Crop PlantsPhosphorus (P) fertilizer is essential for crop production, but reductions are warranted to conserve resources and minimize environmental impacts. Several lab, glasshouse, growth chamber, and field studies have been performed over the past seven years with a new P fertilizer (Carbond P; CBP; Land View Fertilizer, Rupert, ID, USA) in calcareous, low OM soil. This paper will be a review of a portion of that data. Studies comparing CBP to ammonium polyphosphate (APP) and monoammonium phosphate (MAP)... B. Hopkins, T. Blair, J. Selman, C. Ransom, T. Hopkins |
45. Evaluation of Nitrogen Gas Loss from Polymer Coated and Polymer Sulfur Coated UreaPrevious research showed reduced nitrogen (N) gas emissions from polymer coated (PCU) and polymer sulfur coated urea (PSCU) when surface applied to soil. To further verify and quantify (N) loss, experiments were conducted to measure N gas emissions. Fertilizer prills were surface applied in a semi enclosed system to allow atmospheric gases in but to prevent loss of N gases from the headspace. Nitrous oxide (N2O) and ammonia (NH3) emissions were continuously measured every 20 minutes using photoacoustic... B. Hopkins, J. Svedin, C. Ransom, J. Buss, T. Blair |
46. Phosphorus and Organic Acid Bonding Enhances Uptake Efficiency in Crop PlantsPhosphorus (P) fertilizer is essential for crop production, but reductions are warranted to conserve resources and minimize environmental impacts. Several lab, glasshouse, growth chamber, and field studies have been performed over the past five years with a new P fertilizer (Carbond P; CBP; Land View Fertilizer, Rupert, ID, USA) in calcareous, low OM soil. This presentation will be a review of that data. Studies comparing CBP to ammonium polyphosphate (APP) applied to soil show season-long increases... B. Hopkins, T. Blair, M. Hill, C. Ransom |
47. Development of Leaf Sampling and Interpretation Methods for Almond and Development of a Nutrient Budget Approach to Fertilizer Management in AlmondA five year research project on the use of N in orchards crops has been conducted to 1) to develop early season sampling protocols, and 2) to determine the response of Almond to various rates and sources of nitrogen (N) and potassium (K) fertilizers, 3) to develop nutrient demand curves and 4) to conduct a long term assessment of nutrient use efficiency with the goal of improving fertilizer management. Leaf and nut samples were taken at 5 stages of development throughout five seasons to determine... P.H. Brown, S. Saa, S. Muhammad, B. Sanden |
48. Irrigation and Nitrogen Management Web-based Software for Lettuce ProductionLettuce growers on the central coast of California are under increased regulatory pressure to reduce nitrate loading to ground and surface water supplies. Two tools available to farmers to improve nitrogen use efficiency of lettuce are the quick nitrate soil test (QNST) for monitoring soil mineral nitrogen levels and weather-based irrigation scheduling for estimating water needs of the crop. We developed a web-based software application, called CropManage (https://ucanr.edu/cropmanage), to facilitate... M. Cahn, R. Smith, T. Hartz, B. Noel |
49. Inhibitors, Method and Time of Nitrogen Application for Improved Winter Wheat Production in Central MontanaThe contribution of nitrogen (N) fertilizer to boost yield and improve quality is unquestionable. Inefficient use of applied N is economically significant and environmentally unsafe. Ammonia loss can exceed 40% of applied N. Nitrogen leaching is polluting wells. Use of urease and nitrification inhibitors along with appropriate timing and method of nitrogen application can reduce nitrogen loss, improve yield and quality of wheat. This experiment investigated the effect of timing and method of N... Y. Mohammed, T. Jensen, J. Heser, C. Chen |
50. Efficient N Fertility and Irrigation Management in Vegetable and Berry ProductionNitrogen (N) fertility and irrigation management for vegetable and berry production has historically been done on an ‘agronomic’ basis, with the sole focus on producing the optimal crop. For these crops N fertilizer and water costs are a small portion of overall production costs, and an even smaller portion of crop value; consequently, these inputs have not been scrutinized as closely as they have been for lower value crops. However, throughout the West concern over environmental water... T. Hartz, R. Smith, M. Cahn |
51. Polymer Coated Urea (ESN): Impacts on Potato Crop and N LossesPotato (Solanum tuberosum L.) production is sensitive to a steady, adequate supply of nitrogen (N). Synergistically optimizing grower profits while maximizing N use efficiency (NUE) is critical to conserve nonrenewable natural resources used to manufacture N fertilizer and minimize N pollution to water and the atmosphere. Polymer coated urea (PCU, Environmentally Smart N or ESN®) is one type of N fertilizer which uses temperature-controlled diffusion to control N release to better match plant... B. Hopkins, C. Ransom, T. Taysom, J. Lemonte |
52. Polymer Coated Urea (Duration) in Turfgrass: Impacts on Mowing, Visual, and Loss to EnvironmentFall and spring applied N fertilizer trials were conducted over two years in an effort to determine if various slow and controlled release N fertilizers were equivalent to traditional urea and to determine if a reduced rate of controlled release N could be used for improved N use efficiency. An unfertilized control was compared to sulfur coated urea (SCU), polymer and sulfur coated urea (XCU), polymer coated urea (Duration 75 or 125; DR) at 50, 75, and 100% (full) rate, and urea either applied... B. Hopkins, L. Sutton, C. Ransom, T. Blair, J. Moody, K. Manning, S. Bergsten |
53. Boron Fertilization of Chile Pepper Under Greenhouse ConditionsMany chile (Capsicum annuum) growers apply boron (B) without knowing if B is actually needed. The application of B has been suggested to improve specific conditions that limit chile productivity such as alleviating blossom-end rot. Two varieties of chile were grown (159 days) under greenhouse conditions in silica sand and irrigated with seven levels of B (no B, 0.025 mg L-1, 0.05 mg L-1, 0.1 mg L-1, 0.25 mg L-1, 0.5 mg L-1, 1.0 mg L-1) and complete nutrient solution. Leaf B increased linearly... W. Lindemann, R. Flynn, C. Carr, R. Steiner |
54. Highbush Blueberry Response to Compost and SulfurHighbush blueberry is adapted to soils with high organic matter and acidic pH, and it is often grown in Oregon with coniferous sawdust as a soil amendment or mulch. Composts could provide an alternative to sawdust, but acidification is needed to overcome high pH. Our objectives were to (i) predict the quantity of acidity needed to reduce compost pH to 4.8 (ideal for blueberry), (ii) determine compost characteristics suited for blueberry, and (iii) evaluate plant growth response and soil pH response... D. Sullivan, R. Costello, D. Bryla, B. Strik, J. Owens |
55. Improving Phosphorus Use Efficiency with Carbond PPhosphorus (P) fertilizer is integral for maximizing crop production and is used abundantly to achieve desired yields. However, reduction of P fertilizer is warranted, as it is the primary source of nutrient pollution in surface waters (eutrophication leading to hypoxia) and is derived from non-renewable mineral resources. Two research studies were conducted in 2009 to evaluate a new fertilizer product, Carbond® P against traditional fertilizers ammonium polyphosphate (APP) and monoammonium... B. Hopkins, B. Webb, M. Hill, C. Ransom |
56. Advances in Nutrient Use EfficiencyThe improvement of fertilizer efficiency is driven by narrow profit margins, environmental concerns, and resource conservation. Fertile soil is the foundation for food production and successful civilizations; it is developed and maintained through the addition of nutrients lost through harvest. However, nutrient uptake by plants is inherently inefficient and the nutrients remaining in the soil after uptake can cause negative air and water resource impacts. In addition, poor fertilizer efficiency... B. Hopkins |
57. Choosing Your Nitrogen Fertilizers Based on Ammonia VolatilizationUntil recently we have not been able to measure ammonia volatilization without impacting the surrounding environment. In the past we have used closed chambers with acid traps. These closed chambers did not reflect surrounding weather conditions, at the minimum both temperature and wind were influenced. The use of the vertical flux method allows ammonia in the air to be monitored and modeled to reflect ammonia loss without any interference of the surrounding environment. ... D. Sullivan, D. Horneck, J. Holcomb, G. Clough |
58. Ammonia VolatilizationLittle work has been reported on the loss of ammonia from soils where fertilizers have been applied in an undisturbed environment. There are a multitude of studies that have used a chamber of some sort to estimate ammonia loss. The use of a chamber of some sort means that the environment has to be altered making the data derived suspect when translated into a loss number such as kg/ha. The advent of passive vertical flux method by Wood et al., 2000 at Aubrn University in Alabama, allows for the... J. Holcomb, D. Horneck, G. Clough, D. Sullivan |
59. Measured and Predicted Temporal Changes in Soil Nitrate-n Levels from Late Summer to Early Spring in MontanaMost soil sampling is conducted from August to November in Montana because of better soil sampling conditions and because it provides more time for growers to make fertilizer decisions prior to application. Fertilizer guidelines in Montana are based on spring nitrate-N levels in the upper 2 ft because they are more indicative of growing season available N than fall nitrate-N levels. It is not known how much nitrate-N levels change between late summer and spring, nor is it known what factors affect... C. Jones, A. Lenssen, C. Chen, K. Mcvay, B. Stougaard, M. Westcott, J. Eckhoff, J. Weeding, M. Greenwood |
60. Dicarboxylic Acid Polymer (Avail®) Phosphorus Fertilizer Additive: ReviewImproving P use efficiency (PUE) is desirable but difficult due to poor P solubility in soils. A dicarboxylic acid copolymer (AVAIL®) fertilizer additive may enhance PUE due to increased P solubility as a result of sequestering of interfering cations. Field trials have been conducted on a wide variety of crops, with results to AVAIL addition to P fertilizer mixed—seemingly related primarily to soil test P concentrations and fertilizer P rate. Positive results were seen in many of these... B. Hopkins, C. Ransom |
61. Deficit Irrigation in Vineyards of Washington StateIn Washington State the primary wine grape producing areas lie within the rainshadow of the Cascade Range and receive little precipitation throughout the year and especially during the summer. Wine grape producers take advantage of the arid conditions and use irrigation management to control vine growth and vigor. The precise control of irrigation timing and amount also affects the wine making characteristics of the fruit produced. A Cabernet Sauvignon (Vitis vinifera L) vineyard was used... B. Riley, R. Smithyman, J. Harbertson |
62. Polymer Coated Urea: Impacts on Water/air Quality with Surface Applicaton to Permanent SodNitrogen (N) is the most commonly used fertilizer and is essential to sustain the world’s populations. However, inherent inefficiencies in the soil-plant system result in losses of N to air and water, which can result in environmental quality problems. Two permanent sod turfgrass sites were fertilized with coated and uncoated urea and compared to an unfertilized control at 224 lb-N/ac. The polymer coated urea (PCU) was Duration 45 CR®. Fertilization resulted in increased growth and verdure... B. Hopkins, J. Lemonte, J. Summerhays, V. Jolley |
63. Phytosiderophore Exudation from the Roots of Iron Stressed Kentucky BluegrassSome Kentucky bluegrass (Poa pratensis L., KBG) cultivars are susceptible to iron (Fe) deficiency chlorosis when grown on calcareous soils and are routinely treated with Fe fertilizers. Aesthetics could be improved and this costly practice could potentially be eliminated with the use of cultivars resistant to Fe deficiency. Grasses are known to release phytosiderophore into the rhizosphere to dissolve Fe for plant use, and this characteristic has been used to screen for resistant... B. Hopkins, E. Buxton, V. Jolley, R. Christensen |
64. Economics of Fertilization Under Site-specific Management ZonesSite-specific management of crop fields using variable rate application of inputs to manage in-field variability has now been around for over 15 years. However, the degree to which site-specific management strategies increase farm profitability is not well established. The objectives of this study were: to compare uniform and variable-rate Nitrogen (N) management strategies across productivity level site-specific management zones and to identify the most profitable N management strategy. This... R. Khosla, D. Westfall, W. Frasier, B. Koch |
65. Residual Soil Nitrate and Potato Yield with Polymer Coated UreaPotato (Solanum tuberosum L.) requires steady, but not excessive nitrogen (N) supply for maximum tuber yield, size, and solids, as well as minimal internal and external defects. Although more costly and labor intensive than dry broadcast applications, growers typically apply a majority of N via fertigation. A controlled release N fertilizer, polymer coated urea (PCU), is a possible alternative to this growers’ standard practice. A newly formulated PCU may meet plant demand... B. Webb, B. Hopkins, J. Lemonte, T. Taysom, V. Jolley |
66. Elemental Sulfur with Iron: Kentucky BluegrassIron (Fe) is known to improve greenness of Kentucky bluegrass (KBG; Poa pratensis L.), although applications are relatively costly and labor intensive. A new fertilizer material, elemental sulfur impregnated with Fe (ES-Fe), may provide an alternative source of Fe for KBG. The effects of ES-Fe on KBG was evaluated comparing 55 lb-Fe ac-1 ES-Fe to ferrous sulfate (FS) at the same rate and chelated Fe as a foliar (CF) or soil applied (CS) in a glasshouse study. A separate... B. Hopkins, B. Webb, K. Marcroft, R. Christenson, V. Jolley |
67. Waxy Barley: N Applications for Yield, Beta-glucan, and ProteinNitrogen fertilizer (N) management was evaluated for growing irrigated waxy barley for higher protein and beta-glucan soluble fiber content. A local company has proposed the building of a barley fractionation plant to capitalize on these value-added traits. Salute and Merlin, two spring waxy barley cultivars, were fall-planted to compare yield and quality under different N treatments applied in late winter and at heading and to evaluate ethephon to reduce lodging. Fairly normal winter weather... S. Norberg, B. Brown, C. Shock, A. Ross, P. Hayes, J. Rey |
68. Comparing Nutrient Availability in Low Fertility Soils Using Ion Exchange Resin Capsules and Plant Bioavailability Under Greenhouse ConditionsCommonly used soil resin analysis procedures have generally been developed to determine nutrient levels in agriculture soils. The purpose of the resin capsule procedure is to determine the amount of nutrient that correlates to that which is plant available. Desert soils contain lower levels of nutrients than agricultural soils, thus the validity of using resin capsules for desert soils is uncertain. In a previous incubation study it was determined that ion exchange resin capsules can be used as... B. Webb, B. Hopkins, M. Pletsch, D. Cook, M. Vickery, V. Jolley |
69. Phosphorus and Zinc Interactions in PotatoPotato production requires high soil phosphorus (P) application with potential negative environmental and nutrient uptake effects. Impacts of high available P on species in potato cropping rotations are not adequately understood, nor have the causes of reduced yield and quality from excess P been fully explored. Antagonistic interactions with cationic micronutrients such as zinc (Zn) are plausible explanations. Two hydroponic experiments were conducted with Burbank potato to elucidate P and Zn... B. Webb, B. Hopkins, J. Ellsworth, S. Barben, B. Nichols, V. Jolley |
70. Optical Sensing for Nitrogen ManagementAlthough nitrogen (N) nutrition is as or more important than other nutrients, it has been largely ignored by those applying variable rate fertilizer (VRF) due to its loss potential for VRF applications that occur many weeks prior to crop need. Applications of N are best applied as close to crop uptake as possible in order to avoid leaching, denitrification, and other losses. Spatial variability for crop N need is often considerable due to differences in yield potential and, to a lesser degree,... B. Hopkins, S. Stephens, A. Shiffler |
71. Boron Fertilization in PotatoThe high value of potato (Solanum tuberosum L.), its inefficient rooting system and the low organic matter content of sandy soils on which potatoes are cultivated result in widespread application of boron (B) and other micronutrients. However, in times of cost trimming, B may become an omitted input regardless of soil test values. Further, soil tests for B may need to be updated for higher yields, better management or improved soil test methods. Russet Burbank potato was grown at... B. Webb, B. Hopkins, J. Ellsworth, V. Jolley, R. Callahan |
72. Tillage Effects on Phosphorus AvailabilityVertical stratification of phosphorus (P) has been documented in both no-till and reduced tillage systems, yet very few studies have determined if this stratification has affected P uptake, and none of these studies have been conducted in Montana. Stratification of P was compared in 1.2 in layers in a small plot study composed of four tillage systems: long-term conventional (sweep) till (CT), 10-yr no-till (NT), 1-yr NT and 1-yr CT. Olsen P was measured in the upper 12 in., and a sequential extraction... C. Jones, K. Neill, C. Chen, E. Allison |
73. Polymer Coated Urea in Potato ProductionNitrogen (N) is the most important mineral nutrient in potato (Solanum tuberosum) production. Studies show a steady, but not excessive, supply of N is important for maximum tuber yield, size, and solids, as well as minimal internal and external defects. Although more costly and labor intensive dry broadcast applications, growers typically apply the majority of N through the irrigation water in-season in order to maximize yield components. A controlled release N fertilizer, in the form of polymer-coated... B. Hopkins, T. Taysom, A. Shiffler, S. Stephens |
74. Soil Zinc Application for Southwestern PecanPecan trees grown in the alkaline soils of the southwestern United States are prone to zinc deficiency unless supplemental zinc is regularly applied. Standard treatment involves multiple foliar zinc applications. Soil zinc application would provide several advantages. A field study was initiated in 2005 with three soil zinc treatments: no zinc (control), ZnSO4 (74 kg.ha-1 Zn), or ZnEDTA (19 kg.ha-1 Zn) were applied one time in March, 2005 in bands 18 cm deep and 1.2 m on both sides... J. Walworth, A. Pond, H. Nunez, B. Wood, M. Kilby |
75. Remote Sensing of Corn N Status with Active SensorsDetermining in-season corn (Zea mays L.) nitrogen (N) variability has been a research focus of agronomists for quite some time. One of the methods currently available to determine N variability in corn is remote sensing. Studies have shown that remotely sensed imagery can detect N variability in corn. However, this method can have some limitations, such as the timeliness in which this imagery can be acquired. Hand-held active remote sensing devices may overcome these limitations.... D. Westfall, R. Khosla, T. Shaver |
76. Economics of Alfalfa Fertilization Under Inflated Hay and Fertilizer PricesKnowing critical alfalfa nutrient levels in-season improves recommendations and applications, while at the same time saves producers time, expense and effort since many growers take samples for hay quality. Inflation has doubled hay and fertilizer prices which brings into question how current fertility decisions are made. From 2019-2020 detail information on phosphorus and potassium response was conducted. Two experiments were designed as follows: 1) Phosphorus (P) rate study with differing... S. Norberg, D. Llewellyn, J.P. Driver, S. Fransen, J. Harrison |
77. Variable Rate Fertilization: Soil Moisture ImpactsVariable Rate Fertilization (VRF) fertilization is a means of potentially applying nutrients more efficiently. Variable Rate Irrigation (VRI) is increasingly evaluated. However, these are generally studied in isolation, which seems contrary to the principles on which each are founded. Potential benefits of VRF, especially for N, are often confounded or repressed as a result of soil moisture variability due to runoff losses/accumulation and/or total water applied. Similarly, VRI results are impacted... B.G. Hopkins |
78. Improved Small Grain Nitrogen Use Efficiency with California Site-specific Decision SupportSmall grains are grown throughout the state of California (CA) on approximately 500,000 acres annually. They are generally fall-sown and grown during the winter months when most precipitation occurs. Because precipitation and irrigation patterns vary across CA and there is a strong interaction between total water and plant available nitrogen (N), determining fertilizer N application recommendations is particularly challenging in this cropping system. With recent fertilizer price volatility,... N. Clark, M. Lundy, T. Nelsen, M. Leinfelder-miles, S. Light, G. Galdi, T. Getts, K. Mathesius |
79. Using Calcium Hydroxide for Lime Incubation Studies and Moisture Effects on LimingPlant health and productivity are negatively affected by soil acidity. Soil physical properties such as soil texture, soil organic matter, and nutrient content help soils resist changes in their acidity (buffering capacity). Soils have different buffering capacities; agricultural producers need to know how responsive a soil is to lime and how much lime is required to modify a soil to a certain pH (lime requirement). One method to evaluate soil liming requirements and buffering capacity is to add... C. Collins, E. Loera, R. Reid, J. Spackman |
80. Stacking 4R Nutrient Management: PotatoThe 4Rs of nutrient management are research-based guidelines with the aim to improve the sustainability of major cropping systems and the environment without compromising crop yield and quality. The term “4R” represents fertilizer applied at the Right rate with the Right source, Right timing, and Right placement. The objective of this project is to evaluate the interactions of individual and combined 4R management practices. In 2020, potato (Solanum tuberosum L.) was grown... S.H. Stapley, C.C. Whitaker, N.C. Hansen, R.C. Christensen, R.R. Jensen, M.A. Yost, B.G. Hopkins |
81. Polymer Coated Urea: Microplastics in the Urban LandscapePolymer Coated Urea (PCU) in urban landscapes has recently become a controversial practice as some fear the repercussions of the polymer coatings left behind in soils and the environment to potentially be detrimental to land and water ecosystem health. The use of PCU has been beneficial in effectively supplying nitrogen (N) to plants with less leaching, denitrification, and volatilization losses to the environment. However, the pollution of microplastics may outweigh these benefits. The purpose... C. Seely , B. Hopkins |
82. A Single Nutrient Source Hydroponic Solution: pH BufferingMES (2-[N-morpholino]ethanesulfonic acid) is a biological buffer that can be used to stabilize pH in a hydroponic system. It can, however, be toxic to plants, including soybeans. Hydroponic systems are efficient for studying plant nutrition. It is often desirable to adjust individual nutrients for unique species’ needs and/or to create multiple nutrient deficiencies within the same study. However, this is challenging to do with traditional solutions as nutrients are generally... J.D. Ioannou, B. Hopkins |
83. Impact of Variable-Rate Nitrogen on Potato Yield, Quality, and ProfitNitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Factors such as: topography, soil properties, historical yield, and crop stress variably affect nitrogen (N) needs within a field. Applying variable N within a field could improve yields and nitrogen use efficiency (NUE). Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable... E.A. Flint, M. Yost, B. Hopkins |
84. Helpful or Not?- Biostimulant Use in Corn Silage ProductionThere has been a recent increase in both the availability and marketing of biostimulant products to local producers, particularly to dairymen, in southern Idaho. These products claim to increase yield and nutrient use efficiency while improving soil health on agricultural fields. If these claims are true, the use of these products would ultimately aid in promoting the overall sustainability of Idaho farms. However, there is a lack of objective data to support these claims, leaving producers uncertain... L.R. Schott, S. Hines, J. Packham, G. Loomis, M. De haro marti, C. Willmore |
85. CropManage Decision Support Tool for Improving Irrigation and Nutrient Efficiency of Cool Season Vegetables in California: a Decade of Field Demonstrations and OutreachVegetable growers on the central coast of California are under regulatory pressure to reduce nitrate loading to ground and surface water supplies. California is also implementing the Sustainable Groundwater Management Act (SGMA) which may limit agricultural pumping in regions such as the central coast where the aquifer has been over-extracted for irrigation of crops. Growers could potentially use less N fertilizer, address water quality concerns, and conserve water by improving water... M. Cahn, R. Smith, L. Johnson, F. Melton |
86. Flushed Liquid Dairy Manure Solid Particle and Nutrient DistributionsLarge dairies often use liquid manure handling systems because of their ease of mechanization and low labor requirements. Some of Idaho Magic Valley dairies use flushing systems that result in large amounts of liquid dairy manure that are applied via irrigation systems to adjacent cropland during the growing season. Solids and nutrients found in liquid dairy manure pose challenges to manure handling processes and cause environmental concerns. Separating solids and nutrients from liquid dairy manure... L. Chen, K. Kruger |
87. Ammonia Volatilization from Surface-applied Dairy Manure Anaerobic DigestateAnaerobic digesters are becoming increasingly common in the dairy industry as a more environmentally sustainable method to manage manure. However, the impact of the anaerobic digestion process on manure ammonium (NH4-N) composition and ammonia (NH3) volatilization potential are not well understood. The objectives of this study were to compare NH4-N concentrations and cumulative loss of NH3 by volatilization between influent, or raw manure, and effluent,... C. Butler, A. Moore, S.B. Kulesza |
88. Ammonia Recovery from Anaerobically Digested Dairy Wastewater Facilitated by In-situ Acid and Base Generation in a Transmembrane Electro-chemisorption SystemNitrogen (N) is essential for living organisms and is a critical element in agricultural production. Ammonia (NH₃), a vital component in the nitrogen cycle, can be produced naturally by nitrogen-fixing bacteria or artificially through the energy-intensive Haber-Bosch process. Anaerobically digested dairy wastewater (ADDW) could contain high concentrations of ammonia nitrogen (NH3-N) due to the conversion of organic N into NH3-N during the anaerobic digestion process. Ammonia... A.K. Das, L. Chen |
89. Hydrothermal Carbonization of Dairy Manure for Phosphorus Recovery and Runoff Risk Mitigation: Effect of Temperature and CaO AdditionDairy manure contains a significant amount of phosphorus (P) and nitrogen (N), which are essential for soil fertility and crop productivity, but are currently underutilized due to ammonia emissions, P runoff and leaching, and manure N to P ratios do not match crop nutrient needs. Meanwhile, there is a growing concern about P depletion as a non-renewable resource. To address both the excessive use of synthetic P fertilizers and inefficiently direct use of dairy manure, a logical strategy is to... M. Islam, B. He, L. Chen |
90. What is a Plant Nutrient? Changing Definitions to Advance Science and Innovation in Plant NutritionWe propose a new, more comprehensive definition of mineral plant nutrients that extends beyond the current narrow criteria. This expanded definition encompasses not only essential elements but also those that are beneficial for plant growth, development, or quality attributes across various species and environments. The proposed definition recognizes elements with clear metabolic functions and those that enhance plant productivity, crop quality, resource use efficiency, stress tolerance, or pest... P.H. Brown |