Download the Conference Proceedings
Proceedings
Authors
Filter results24 paper(s) found. |
---|
1. Is Mitigation of Drought Stress By Zinc Oxide Nanoparticles Driven By a Nano-Specific Mechanism or Alleviation of Micronutrient Deficiency?It has been reported that zinc oxide (ZnO) nanoparticles (NPs) can promote drought tolerance in crops when used as soil amendments. However, many of these experiments were conducted in Zn-deficient growth media with no comparison to currently available Zn fertilization methods, making it unclear if the benefits from adding ZnO NPs were caused by a nano-specifc mechanism or simply by the mitigation of a micronutrient deficiency. A review of the literature shows that of 12 published experiments... J.W. Deakin, M. Potter, A. Cartwright, J. Hortin, D. Sparks, J.E. Mclean, D.W. Britt, A.J. Anderson, A.R. Jacobson, L. Yen |
2. Residue Decomposition of Surface and Incorporated Barley, Corn, and Wheat at Varying Fertilizer-N RatesCereal crops are commonly grown in southern Idaho and most parts of the western United States. These cereal crops are routinely harvested for their grain with the remaining plant material (chaff, stems, leaves, etc.) left in the field to decompose prior to planting of following spring crops. Understanding the effects of post-harvest residue management on barley (Hordeum vulgare L.), corn (Zea mays L.), and wheat (Tritcum aestivum L.) residue is important for optimizing... C. Rogers, G. Thurgood, B. Dari, J. Marshall, O.S. Walsh, K. Schroeder, G. Loomis |
3. Effects of Commercial Organic and Cyanobacterial Fertilizers on Instantaneous Water Use Efficiency in Drip Irrigated Organic Sweet CornWater and fertilizers are applied to maintain crop growth, yield, and quality. Nitrogen (N) fertilizer plays a crucial role in crop growth and yield development of sweet corn (Zea mays). Organic growers often use commercial organic animal- based fertilizers which vary in nutrient composition, forms of available N (NH4+- N and NO3--N), and have high transportation costs. Alternatively, cyanobacteria can be grown on-site as a source of N. Cyanobacteria haves unique dual properties because they... J. G. davis, A. Sukor, C. Ramsey |
4. Effects of Enhanced Mixing and Minimal Co2 Supplementation on Biomass and Nitrogen Concentration in a Nitrogen-fixing Anabaena Sp. Cyanobacteria Biofertilizer Production CultureNitrogen-fixing cyanobacteria are attractive as a nitrogen fertilizer because they are ubiquitous in nature and have minimal nutrient requirements. Our lab is scaling up production of a local strain of the nitrogen-fixing cyanobacterium Anabaena sp. in on-farm open raceways to determine its exonomic ppotential as a nitrogen fertilizer for horticultural crops. Our goal is to increase productivity in an organically certifiable growth medium above the current two week batch production levels... J. G. davis, J. Wenz, H. Storteboom |
5. Effect of Liquid Organic Fertilizers and Seaweed Extract on Daucus Carota Var. Sativus Growth CharacteristicsCommon N fertilizers used in organic production are often energy intensive to produce and expensive to transport. Cyanobacteria fertilizer produced on-farm could decrease impacts on the environment as well as production costs for organic farmers. In addition, cyanobacteria fertilizer could perform similarly to products marketed to increase production via plant growth hormones such as seaweed extract. The effects of common organic fertilizers as well as organic liquid cyanobacteria fertilizer on... J. G. davis, A. Wickham |
6. Development of Leaf Sampling and Interpretation Methods for Almond and Development of a Nutrient Budget Approach to Fertilizer Management in AlmondA five year research project on the use of N in orchards crops has been conducted to 1) to develop early season sampling protocols, and 2) to determine the response of Almond to various rates and sources of nitrogen (N) and potassium (K) fertilizers, 3) to develop nutrient demand curves and 4) to conduct a long term assessment of nutrient use efficiency with the goal of improving fertilizer management. Leaf and nut samples were taken at 5 stages of development throughout five seasons to determine... P.H. Brown, S. Saa, S. Muhammad, B. Sanden |
7. Polymer Coated Urea: Impacts on Water/air Quality with Surface Applicaton to Permanent SodNitrogen (N) is the most commonly used fertilizer and is essential to sustain the world’s populations. However, inherent inefficiencies in the soil-plant system result in losses of N to air and water, which can result in environmental quality problems. Two permanent sod turfgrass sites were fertilized with coated and uncoated urea and compared to an unfertilized control at 224 lb-N/ac. The polymer coated urea (PCU) was Duration 45 CR®. Fertilization resulted in increased growth and verdure... B. Hopkins, J. Lemonte, J. Summerhays, V. Jolley |
8. Residual Soil Nitrate and Potato Yield with Polymer Coated UreaPotato (Solanum tuberosum L.) requires steady, but not excessive nitrogen (N) supply for maximum tuber yield, size, and solids, as well as minimal internal and external defects. Although more costly and labor intensive than dry broadcast applications, growers typically apply a majority of N via fertigation. A controlled release N fertilizer, polymer coated urea (PCU), is a possible alternative to this growers’ standard practice. A newly formulated PCU may meet plant demand... B. Webb, B. Hopkins, J. Lemonte, T. Taysom, V. Jolley |
9. Elemental Sulfur with Iron: Kentucky BluegrassIron (Fe) is known to improve greenness of Kentucky bluegrass (KBG; Poa pratensis L.), although applications are relatively costly and labor intensive. A new fertilizer material, elemental sulfur impregnated with Fe (ES-Fe), may provide an alternative source of Fe for KBG. The effects of ES-Fe on KBG was evaluated comparing 55 lb-Fe ac-1 ES-Fe to ferrous sulfate (FS) at the same rate and chelated Fe as a foliar (CF) or soil applied (CS) in a glasshouse study. A separate... B. Hopkins, B. Webb, K. Marcroft, R. Christenson, V. Jolley |
10. Comparing Nutrient Availability in Low Fertility Soils Using Ion Exchange Resin Capsules and Plant Bioavailability Under Greenhouse ConditionsCommonly used soil resin analysis procedures have generally been developed to determine nutrient levels in agriculture soils. The purpose of the resin capsule procedure is to determine the amount of nutrient that correlates to that which is plant available. Desert soils contain lower levels of nutrients than agricultural soils, thus the validity of using resin capsules for desert soils is uncertain. In a previous incubation study it was determined that ion exchange resin capsules can be used as... B. Webb, B. Hopkins, M. Pletsch, D. Cook, M. Vickery, V. Jolley |
11. Variability of Manure Nutrient Content and Implications for Manure Sampling ProtocolThe variability of manure nutrient levels within and across farms makes manure sampling and development of reliable tabular values challenging. The chemical characteristics of beef, dairy, horse, sheep, and chicken solid manures in Colorado were evaluated by sampling six to ten different livestock operations for each manure type and comparing the results to values found in the literature. Due to the semi-arid climate of Colorado, manure tends to be drier and have lower ammonium (NH4-N) levels... J. G. davis, K. Iversen, M. Vigil |
12. Determining Plant Available Nitrogen from Manure and Compost Topdressed on an Irrigated PastureComposting manure is a practice that is gaining acceptance as an environmentally sound manure management practice at large animal production operations. Composting produces a value-added product that enhances the fertility and physical properties of soil. During the composting process, nitrogen and phosphorus in the original feedstocks are converted through microbial activity into predominantly stable organic compounds, lessening the risk of loss of these nutrients into the environment. Compost... J. G. davis, T. Bauder, K. Corwin doesken, A. Elliott |
13. Best Management Practices (Bmps) for Ammonia Emissions Reduction from Animal Feeding Operations: a Colorado Case StudyAmmonia emissions from agriculture are a growing concern, in particular, in Colorado where nitrogen deposition in Rocky Mountain National Park has highlighted public concerns. Due to the high level of political pressure on agriculture to reduce its emissions, the agricultural community in Colorado has recently developed a Rocky Mountain National Park Ag Strategy for decreasing ammonia emissions from agriculture and nitrogen deposition in the park. The strategy includes the completion of a thorough... J. G. davis, A. Elliott, N. Marcillac, J. Pritchett, C. Stewart, A. Mink |
14. Tillage Effects on Phosphorus AvailabilityVertical stratification of phosphorus (P) has been documented in both no-till and reduced tillage systems, yet very few studies have determined if this stratification has affected P uptake, and none of these studies have been conducted in Montana. Stratification of P was compared in 1.2 in layers in a small plot study composed of four tillage systems: long-term conventional (sweep) till (CT), 10-yr no-till (NT), 1-yr NT and 1-yr CT. Olsen P was measured in the upper 12 in., and a sequential extraction... C. Jones, K. Neill, C. Chen, E. Allison |
15. Reducing Dairy Effluent Phosphorus Content Through Struvite ProductionForced precipitation of struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO46H2O) in wastewater treatment has recently received increased attention as a method of phosphorus (P) recycling. Dairy lagoon P concentrations can be lowered, and the recovered struvite has the potential to be marketed and used as a fertilizer. Struvite may even be useful in organic production on calcareous soils, where rock P (PR) is not an option. A new organic treatment method, based on an existing... J. G. davis, J. Ippolito, M. Massey, R. Sheffield |
16. Predicting Phosphorus Runoff from Calcareous SoilsStudies have shown that as extractable soil P levels increase, runoff P levels also increase. This relationship has been found on many different soils, but tends to be unique for each soil series. Very little research exists evaluating this relationship in calcareous soils. The objectives of this study were to determine soil series specific relationships between soil test phosphorus (STP) and runoff P for three calcareous soils, to compare the use of different soil extractants for runoff P prediction... J. G. davis, R. Schierer, J. Zumbrunnen |
17. Determining Lime Requirements for Idaho SoilsFor the past 25 years, northern Idaho soils have significantly shown a decline in soil pH, from pH 6.0 to around a pH of 5.6. Southern Idaho soils are mostly neutral to alkaline, with a pH of around 7.0 to 8.5, however, most agricultural soils pH is declining to pH < 4.5. Soil acidification is becoming a rising issue in soil sustainability, in which approximately 30% of the world surface is covered by acidic soils. Low soil solution pH can be induced by continued irrigation that increases... K.L. Mookodi, J. Spackman, J. Sagers, K. Schroeder |
18. Spoon-fed Nitrogen and Phosphorus Management for Subsurface Drip Irrigated Cotton (Gossypium hirsutum)Subsurface drip irrigation (SDI) is becoming a popular option for maximizing the water use efficiency of cotton (Gossypium hirsutum), especially in semi-arid environments of the Midsouth and Western United States. Applying fertilizers through SDI provides an opportunity to prescriptively apply nutrients at peak nutrient demand which could minimize loss and increase uptake, but the application timing is poorly understood. The objective of this study was to develop nitrogen (N) and... J.A. Burke, K.L. Lewis |
19. Nitrogen Management to Increase Cotton Production in Conservation Cropping SystemsThe use of conservation management practices, like cover crops and no-tillage, is common in semi-arid cropping systems to reduce wind erosion. However, the use of these practices can also reduce cotton lint yield. The purpose of this study was to determine the impact of nitrogen (N) management in conservation cropping systems to increase cotton lint yield. Two experiments were conducted at the Agricultural Complex for Advanced Research and Extension Systems in Lamesa, TX, USA. The first experiment... J.A. Burke, K.L. Lewis, J.L. Foster-malone |
20. Biosolids-based Fertilizers as a Nitrogen Source in California Small Grains SystemsSituation/ conditions In response to regulatory and economic pressure, California growers are becoming more familiar with nitrogen budgets. In addition to seeking out ways to improve nitrogen management strategies, growers can possibly benefit by incorporating alternative sources of nitrogen to feed their crops. Liquid injected or pelletized biosolids-based fertilizers from local waste streams and processing facilities are one source that growers are beginning to explore. As... K. Mathesius, D. Geisseler, M. Savidge, M. Lundy, T. Nelson, N. Andersen |
21. Response of Soil N Cycling, Nitrifying Organisms, and Winter Wheat Yield and Quality to Nitrification Inhibitors in High Rainfall Zones of Northern IdahoLeaching of fertilizer nitrogen contributes to environmental pollution and is an economic loss for agricultural producers. Leaching of inorganic nitrogen fertilizers is intensified when applied to areas of high rainfall zones in excess of crop requirements. Reduction of this nitrogen loss may be achieved through the application of nitrification inhibitors at the time of planting to prevent the transformation of ammonia to more leachable nitrate by nitrifying organisms. Much research on nitrification... S. Philpott, H. Tao, K. Schroeder |
22. Effects of Long-term Biosolids Applications in Two Dryland Agroecosystems on Physical, Biological, and Chemical Soil Health PropertiesBiosolids can be important sources of organic matter to semi-arid dryland grain systems and have the potential to mitigate some of the soil health challenges specific to these areas while providing an alternative to synthetic fertilizers. Biosolids are an important avenue for beneficially reusing and redistributing nutrients from high population urban areas to more rural agricultural areas. We explored how long-term (20+ year) applications of biosolids at two field sites affected physical, biological... M. Desjardins, A. Bary, J. Ippolito, S. Cappellazzi, D. Liptzin, D. Griffin-lahue |
23. Lime Incubation for Southern Idaho SoilsSoil acidity is a growing concern for agricultural productivity in Idaho, particularly in the eastern and northern regions where soils are trending acidic. Soil acidity below a pH 5.5 adversely affects the root development and nutrient uptake of crops like alfalfa, barley, and wheat. This study aims to determine the lime requirements for acidic soils in Idaho to optimize crop growth, specifically targeting pH levels of 5.5, 6.0, 6.5, and 7.0. Soil samples were collected from various grower fields... K. Young, J. Spackman, T. Jacobsen, J. Sagers, J. Hatch, R. Ritchie, J. Williams, K. Schroeder, A. Adjesiwor |
24. Liming for Improved Nutrient Utilization and Weed Management in WheatSoil acidification is an increasing concern for agricultural productivity in Eastern Idaho, where low soil pH threatens the yield and quality of key crops such as barley and spring wheat. Acidification occurs from the long-term application of ammonium-based fertilizers and other management practices, leading to aluminum toxicity and nutrient imbalances that inhibit root development and reduce yields. Farmers in the region are exploring strategies to address this challenge, including the use of... T. Jacobsen, J. Spackman, A. Adjesiwor, J. Sagers, K. Schroeder, J. Bevan, K. Mookodi, J. Gibbons |